English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Active zone protein expression changes at the key stages of cerebellar cortex neurogenesis in the rat.

MPS-Authors
/persons/resource/persons15830

Siddiqui,  T. J.
Department of Neurobiology, MPI for biophysical chemistry, Max Planck Society;

/persons/resource/persons15266

Jahn,  R.
Department of Neurobiology, MPI for biophysical chemistry, Max Planck Society;

Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Juranek, J. K., Mukherjee, K., Siddiqui, T. J., Kaplan, B. J., Li, J. Y., Ahnert-Hilger, G., et al. (2013). Active zone protein expression changes at the key stages of cerebellar cortex neurogenesis in the rat. Acta Histochemica, 116(6), 616-625. doi:10.1016/j.acthis.2013.01.003.


Cite as: https://hdl.handle.net/11858/00-001M-0000-0014-4BBD-D
Abstract
Signal transduction and neurotransmitter release in the vertebrate central nervous system are confined to the structurally complex presynaptic electron dense projections called “active zones.” Although the nature of these projections remains a mystery, genetic and biochemical work has provided evidence for the active zone (AZ) associated proteins i.e. Piccolo/Aczonin, Bassoon, RIM1/Unc10, Munc13/Unc13, Liprin-α/SYD2/Dliprin and ELKS/CAST/BRP and their specific molecular functions. It still remains unclear, however, what their precise contribution is to the AZ assembly. In our project, we studied in Wistar rats the temporal and spatial distribution of AZ proteins and their colocalization with Synaptophysin in the developing cerebellar cortex at key stages of cerebellum neurogenesis. Our study demonstrated that AZ proteins were already present at the very early stages of cerebellar neurogenesis and exhibited distinct spatial and temporal variations in immunoexpression throughout the course of the study. Colocalization analysis revealed that the colocalization pattern was time-dependent and different for each studied protein. The highest collective mean percentage of colocalization (>85%) was observed at postnatal day (PD) 5, followed by PD10 (>83%) and PD15 (>80%). The findings of our study shed light on AZ protein immunoexpression changes during cerebellar cortex neurogenesis and help frame a hypothetical model of AZ assembly.