Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Single subject fMRI test-retest reliability metrics and confounding factors

MPG-Autoren
Es sind keine MPG-Autoren in der Publikation vorhanden
Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Gorgolewski, K. J., Storkey, A. J., Bastin, M. E., Whittle, I., & Pernet, C. (2013). Single subject fMRI test-retest reliability metrics and confounding factors. NeuroImage, 69, 231-243. doi:10.1016/j.neuroimage.2012.10.085.


Zitierlink: https://hdl.handle.net/11858/00-001M-0000-0014-4F57-6
Zusammenfassung
While the fMRI test–retest reliability has been mainly investigated from the point of view of group level studies, here we present analyses and results for single-subject test–retest reliability. One important aspect of group level reliability is that not only does it depend on between-session variance (test–retest), but also on between-subject variance. This has partly led to a debate regarding which reliability metric to use and how different sources of noise contribute to between-session variance. Focusing on single subject reliability allows considering between-session only. In this study, we measured test–retest reliability in four behavioural tasks (motor mapping, covert verb generation, overt word repetition, and a landmark identification task) to ensure generalisation of the results and at three levels of data processing (time-series correlation, t value variance, and overlap of thresholded maps) to understand how each step influences the other and how confounding factors influence reliability at each of these steps. The contributions of confounding factors (scanner noise, subject motion, and coregistration) were investigated using multiple regression and relative importance analyses at each step. Finally, to achieve a fuller picture of what constitutes a reliable task, we introduced a bootstrap technique of within- vs. between-subject variance. Our results show that (i) scanner noise and coregistration errors have little contribution to between-session variance (ii) subject motion (especially correlated with the stimuli) can have detrimental effects on reliability (iii) different tasks lead to different reliability results. This suggests that between-session variance in fMRI is mostly caused by the variability of underlying cognitive processes and motion correlated with the stimuli rather than technical limitations of data processing.