English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Thalamic and parietal brain morphology predicts auditory category learning

MPS-Authors
/persons/resource/persons23123

Scharinger,  Mathias
Max Planck Research Group Auditory Cognition, MPI for Human Cognitive and Brain Sciences, Max Planck Society;

/persons/resource/persons23118

Henry,  Molly
Max Planck Research Group Auditory Cognition, MPI for Human Cognitive and Brain Sciences, Max Planck Society;

/persons/resource/persons19855

Meyer,  Lars
Department Neuropsychology, MPI for Human Cognitive and Brain Sciences, Max Planck Society;

/persons/resource/persons23116

Erb,  Julia
Max Planck Research Group Auditory Cognition, MPI for Human Cognitive and Brain Sciences, Max Planck Society;

/persons/resource/persons19902

Obleser,  Jonas
Max Planck Research Group Auditory Cognition, MPI for Human Cognitive and Brain Sciences, Max Planck Society;

External Resource
No external resources are shared
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Scharinger, M., Henry, M., Meyer, L., Erb, J., & Obleser, J. (2014). Thalamic and parietal brain morphology predicts auditory category learning. Neuropsychologia, 53, 75-83. doi:10.1016/j.neuropsychologia.2013.09.012.


Cite as: http://hdl.handle.net/11858/00-001M-0000-0014-5110-4
Abstract
Auditory categorization is a vital skill involving the attribution of meaning to acoustic events, engaging domain-specific (i.e., auditory) as well as domain-general (e.g., executive) brain networks. A listener's ability to categorize novel acoustic stimuli should therefore depend on both, with the domain-general network being particularly relevant for adaptively changing listening strategies and directing attention to relevant acoustic cues. Here we assessed adaptive listening behavior, using complex acoustic stimuli with an initially salient (but later degraded) spectral cue and a secondary, duration cue that remained nondegraded. We employed voxel-based morphometry (VBM) to identify cortical and subcortical brain structures whose individual neuroanatomy predicted task performance and the ability to optimally switch to making use of temporal cues after spectral degradation. Behavioral listening strategies were assessed by logistic regression and revealed mainly strategy switches in the expected direction, with considerable individual differences. Gray-matter probability in the left inferior parietal lobule (BA 40) and left precentral gyrus was predictive of “optimal” strategy switch, while gray-matter probability in thalamic areas, comprising the medial geniculate body, co-varied with overall performance. Taken together, our findings suggest that successful auditory categorization relies on domain-specific neural circuits in the ascending auditory pathway, while adaptive listening behavior depends more on brain structure in parietal cortex, enabling the (re)direction of attention to salient stimulus properties.