Deutsch
 
Benutzerhandbuch Datenschutzhinweis Impressum Kontakt
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Konferenzbeitrag

Extraction of Temporal Facts and Events from Wikipedia

MPG-Autoren
/persons/resource/persons44875

Kuzey,  Erdal
International Max Planck Research School, MPI for Informatics, Max Planck Society;
Databases and Information Systems, MPI for Informatics, Max Planck Society;

/persons/resource/persons45720

Weikum,  Gerhard
Databases and Information Systems, MPI for Informatics, Max Planck Society;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Kuzey, E., & Weikum, G. (2012). Extraction of Temporal Facts and Events from Wikipedia. In R. Baeza-Yates, J. Masanès, & M. Spaniol (Eds.), TempWeb 2012 (pp. 25-32). New York, NY: ACM.


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-0014-5A30-1
Zusammenfassung
Recently, large-scale knowledge bases have been constructed by automatically extracting relational facts from text. Unfortunately, most of the current knowledge bases focus on static facts and ignore the temporal dimension. However, the vast majority of facts are evolving with time or are valid only during a particular time period. Thus, time is a signifi- cant dimension that should be included in knowledge bases. In this paper, we introduce a complete information extraction framework that harvests temporal facts and events from semi-structured data and free text of Wikipedia articles to create a temporal ontology. First, we extend a temporal data representation model by making it aware of events. Second, we develop an information extraction method which harvests temporal facts and events from Wikipedia infoboxes, categories, lists, and article titles in order to build a temporal knowledge base. Third, we show how the system can use its extracted knowledge for further growing the knowledge base. We demonstrate the effectiveness of our proposed methods through several experiments. We extracted more than one million temporal facts with precision over 90\% for extraction from semi-structured data and almost 70\% for extraction from text.