Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Evaluation of land surface models in reproducing satellite derived LAI over the high-latitude Northern Hemisphere. Part I: Uncoupled DGVMs

MPG-Autoren
/persons/resource/persons62612

Zaehle,  Sönke
Terrestrial Biosphere Modelling & Data assimilation, Dr. S. Zähle, Department Biogeochemical Systems, Prof. M. Heimann, Max Planck Institute for Biogeochemistry, Max Planck Society;
Terrestrial Biosphere Modelling , Dr. Sönke Zähle, Department Biogeochemical Integration, Dr. M. Reichstein, Max Planck Institute for Biogeochemistry, Max Planck Society;

Externe Ressourcen
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)

BGC1921.pdf
(Verlagsversion), 3MB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Murray-Tortarolo, G., Anav, A., Friedlingstein, P., Sitch, S., Piao, S., Zhu, Z., et al. (2013). Evaluation of land surface models in reproducing satellite derived LAI over the high-latitude Northern Hemisphere. Part I: Uncoupled DGVMs. Remote Sensing, 5(10), 4819-4838. doi:10.3390/rs5104819.


Zitierlink: https://hdl.handle.net/11858/00-001M-0000-0014-5D2C-8
Zusammenfassung
Leaf Area Index (LAI) represents the total surface area of leaves above a unit area of ground and is a key variable in any vegetation model, as well as in climate models. New high resolution LAI satellite data is now available covering a period of several decades. This provides a unique opportunity to validate LAI estimates from multiple vegetation models. The objective of this paper is to compare new, satellite-derived LAI measurements with modeled output for the Northern Hemisphere. We compare monthly LAI output from eight land surface models from the TRENDY compendium with satellite data from an Artificial Neural Network (ANN) from the latest version (third generation) of GIMMS AVHRR NDVI data over the period 1986–2005. Our results show that all the models overestimate the mean LAI, particularly over the boreal forest. We also find that seven out of the eight models overestimate the length of the active vegetation-growing season, mostly due to a late dormancy as a result of a late summer phenology. Finally, we find that the models report a much larger positive trend in LAI over this period than the satellite observations suggest, which translates into a higher trend in the growing season length. These results highlight the need to incorporate a larger number of more accurate plant functional types in all models and, in particular, to improve the phenology of deciduous trees.