English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Musical groove modulates motor cortex excitability: A TMS investigation

MPS-Authors

Stupacher,  Jan
Max Planck Research Group Music Cognition and Action, MPI for Human Cognitive and Brain Sciences, Max Planck Society;
Eberhard Karls University Tübingen, Germany;

/persons/resource/persons19736

Hove,  Michael J.
Max Planck Research Group Music Cognition and Action, MPI for Human Cognitive and Brain Sciences, Max Planck Society;

/persons/resource/persons19897

Novembre,  Giacomo
Max Planck Research Group Music Cognition and Action, MPI for Human Cognitive and Brain Sciences, Max Planck Society;

/persons/resource/persons19564

Schütz-Bosbach,  Simone
Max Planck Research Group Body and Self, MPI for Human Cognitive and Brain Sciences, Max Planck Society;

/persons/resource/persons19767

Keller,  Peter E.
Max Planck Research Group Music Cognition and Action, MPI for Human Cognitive and Brain Sciences, Max Planck Society;
The MARCS Institute, University of Western Sydney, Australia;

External Resource
No external resources are shared
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Stupacher, J., Hove, M. J., Novembre, G., Schütz-Bosbach, S., & Keller, P. E. (2013). Musical groove modulates motor cortex excitability: A TMS investigation. Brain and Cognition, 82(2), 127-136. doi:10.1016/j.bandc.2013.03.003.


Cite as: http://hdl.handle.net/11858/00-001M-0000-0014-5E16-0
Abstract
Groove is often described as a musical quality that can induce movement in a listener. This study examines the effects of listening to groove music on corticospinal excitability. Musicians and non-musicians listened to high-groove music, low-groove music, and spectrally matched noise, while receiving single-pulse transcranial magnetic stimulation (TMS) over the primary motor cortex either on-beat or off-beat. We examined changes in the amplitude of the motor-evoked potentials (MEPs), recorded from hand and arm muscles, as an index of activity within the motor system. Musicians and non-musicians rated groove similarly. MEP results showed that high-groove music modulated corticospinal excitability, whereas no difference occurred between low-groove music and noise. More specifically, musicians’ MEPs were larger with high-groove than low-groove music, and this effect was especially pronounced for on-beat compared to off-beat pulses. These results indicate that high-groove music increasingly engages the motor system, and the temporal modulation of corticospinal excitability with the beat could stem from tight auditory–motor links in musicians. Conversely, non-musicians’ MEPs were smaller for high-groove than low-groove music, and there was no effect of on- versus off-beat pulses, potentially stemming from suppression of overt movement. In sum, high-groove music engages the motor system, and previous training modulates how listening to music with a strong groove activates the motor system.