Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Computational Electrophysiology: The molecular dynamics of ion channel Permeation and selectivity in atomistic detail.

MPG-Autoren
/persons/resource/persons15407

Kutzner,  C.
Department of Theoretical and Computational Biophysics, MPI for biophysical chemistry, Max Planck Society;

/persons/resource/persons15155

Grubmüller,  H.
Department of Theoretical and Computational Biophysics, MPI for biophysical chemistry, Max Planck Society;

/persons/resource/persons14970

de Groot,  B. L.
Research Group of Computational Biomolecular Dynamics, MPI for biophysical chemistry, Max Planck Society;

/persons/resource/persons16069

Zachariae,  U.
Research Group of Computational Biomolecular Dynamics, MPI for biophysical chemistry, Max Planck Society;

Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)

1838239.pdf
(Verlagsversion), 2MB

Ergänzendes Material (frei zugänglich)

Kutzner_2011_BPJ_101_755-756_n_n.pdf
(Ergänzendes Material), 44KB

Zitation

Kutzner, C., Grubmüller, H., de Groot, B. L., & Zachariae, U. (2011). Computational Electrophysiology: The molecular dynamics of ion channel Permeation and selectivity in atomistic detail. Biophysical Journal, 101(4), 809-817.


Zitierlink: https://hdl.handle.net/11858/00-001M-0000-0014-608D-9
Zusammenfassung
Presently, most simulations of ion channel function rely upon nonatomistic Brownian dynamics calculations, indirect interpretation of energy maps, or application of external electric fields. We present a computational method to directly simulate ion flux through membrane channels based on biologically realistic electrochemical gradients. In close analogy to single-channel electrophysiology, physiologically and experimentally relevant timescales are achieved. We apply our method to the bacterial channel PorB from pathogenic Neisseria meningitidis, which, during Neisserial infection, inserts into the mitochondrial membrane of target cells and elicits apoptosis by dissipating the membrane potential. We show that our method accurately predicts ion conductance and selectivity and elucidates ion conduction mechanisms in great detail. Handles for overcoming channel-related antibiotic resistance are identified.