English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Distinct antimicrobial peptide expression determines host species-specific bacterial associations

MPS-Authors
/persons/resource/persons56786

Künzel,  Sven
Department Evolutionary Genetics, Max Planck Institute for Evolutionary Biology, Max Planck Society;

/persons/resource/persons82474

Wang,  Jun
Guest Group Evolutionary Genomics, Max Planck Institute for Evolutionary Biology, Max Planck Society;

/persons/resource/persons56580

Baines,  John F.
Guest Group Evolutionary Genomics, Max Planck Institute for Evolutionary Biology, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Franzenburg, S., Walter, J., Künzel, S., Wang, J., Baines, J. F., Bosch, T. C. G., et al. (2013). Distinct antimicrobial peptide expression determines host species-specific bacterial associations. Proceedings of the National Academy of Sciences of the United States of America, 110(39), E3730-E3738. doi:10.1073/pnas.1304960110.


Cite as: https://hdl.handle.net/11858/00-001M-0000-0014-64BE-A
Abstract
Animals are colonized by coevolved bacterial communities, which contribute to the host’s health. This commensal microbiota is often highly specific to its host-species, inferring strong selective pressures on the associated microbes. Several factors, including diet, mucus composition, and the immune system have been proposed as putative determinants of host-associated bacterial communities. Here we report that species-specific antimicrobial peptides account for different bacterial communities associated with closely related species of the cnidarian Hydra. Gene family extensions for potent antimicrobial peptides, the arminins, were detected in four Hydra species, with each species possessing a unique composition and expression profile of arminins. For functional analysis, we inoculated arminin-deficient and control polyps with bacterial consortia characteristic for different Hydra species and compared their selective preferences by 454 pyrosequencing of the bacterial microbiota. In contrast to control polyps, arminin-deficient polyps displayed decreased potential to select for bacterial communities resembling their native microbiota. This finding indicates that species- specific antimicrobial peptides shape species-specific bacterial associations.