English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Conference Paper

Status of the Fritz Haber Institute THz FEL

MPS-Authors
/persons/resource/persons22079

Schöllkopf,  Wieland
Molecular Physics, Fritz Haber Institute, Max Planck Society;

/persons/resource/persons21548

Gewinner,  Sandy
Molecular Physics, Fritz Haber Institute, Max Planck Society;

/persons/resource/persons21494

Erlebach,  Wolfgang
Molecular Physics, Fritz Haber Institute, Max Planck Society;

/persons/resource/persons21684

Junkes,  Heinz
Chemical Physics, Fritz Haber Institute, Max Planck Society;

/persons/resource/persons104542

Liedke,  Andreas
Molecular Physics, Fritz Haber Institute, Max Planck Society;

/persons/resource/persons21614

Helden,  Gert von
Molecular Physics, Fritz Haber Institute, Max Planck Society;

/persons/resource/persons22295

Zhang,  Weiqing
Molecular Physics, Fritz Haber Institute, Max Planck Society;

/persons/resource/persons21859

Meijer,  Gerard
Molecular Physics, Fritz Haber Institute, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)

FEL2011_Shanghai_TUPB30.pdf
(Publisher version), 2MB

Supplementary Material (public)
There is no public supplementary material available
Citation

Schöllkopf, W., Gewinner, S., Erlebach, W., Junkes, H., Liedke, A., Helden, G. v., et al. (2012). Status of the Fritz Haber Institute THz FEL. In Proceedings of FEL2011, Shanghai, China (pp. 315-317).


Cite as: https://hdl.handle.net/11858/00-001M-0000-0014-66F1-6
Abstract
The THz FEL at the Fritz Haber Institute (FHI) in Berlin is designed to deliver radiation from 4 to 400 microns. A single-plane-focusing undulator combined with a 5.4 m long cavity is used is the mid-IR (< 50 micron), while a two-plane-focusing undulator in combination with a 7.2 m long cavity with a 1-d waveguide for the optical mode is used for the far-IR. A key aspect of the accelerator performance is low longitudinal emittance, < 50 keV-psec, at 200 pC bunch charge and 50 MeV from a gridded thermionic electron source. We utilize twin accelerating structures separated by a chicane to deliver the required performance over the < 20 - 50 MeV energy range. The first structure operates at near fixed field while the second structure controls the output energy, which, under some conditions, requires running in a decelerating mode. "First Light" is targeted for the centennial of the FHI in October 2011 and we will describe progress in the commissioning of this device. Specifically, the measured performance of the accelerated electron beam will be compared to design simulations and the observed matching of the beam to the mid-IR wiggler will be described.