English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

MAX-DOAS formaldehyde slant column measurements during CINDI: intercomparison and analysis improvement

MPS-Authors
/persons/resource/persons101265

Shaiganfar,  R.
Satellite Remote Sensing, Max Planck Institute for Chemistry, Max Planck Society;

/persons/resource/persons101349

Wagner,  T.
Satellite Remote Sensing, Max Planck Institute for Chemistry, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Pinardi, G., Van Roozendael, M., Abuhassan, N., Adams, C., Cede, A., Clémer, K., et al. (2013). MAX-DOAS formaldehyde slant column measurements during CINDI: intercomparison and analysis improvement. Atmospheric Measurement Techniques, 6(1), 167-185.


Cite as: https://hdl.handle.net/11858/00-001M-0000-0014-C378-0
Abstract
We present intercomparison results for formaldehyde (HCHO) slant column measurements performed during the Cabauw Intercomparison campaign of Nitrogen Dioxide measuring Instruments (CINDI) that took place in Cabauw, the Netherlands, in summer 2009. During two months, nine atmospheric research groups simultaneously operated MAX-DOAS (MultiAXis Differential Optical Absorption Spectroscopy) instruments of various designs to record UV-visible spectra of scattered sunlight at different elevation angles that were analysed using common retrieval settings. The resulting HCHO data set was found to be highly consistent, the mean difference between instruments generally not exceeding 15 % or 7.5 x 10(15) molec cm(-2), for all viewing elevation angles. Furthermore, a sensitivity analysis was performed to investigate the uncertainties in the HCHO slant column retrieval when varying key input parameters such as the molecular absorption cross sections, correction terms for the Ring effect or the width and position of the fitting interval. This study led to the identification of potentially important sources of errors associated with cross-correlation effects involving the Ring effect, O-4, HCHO and BrO cross sections and the DOAS closure polynomial. As a result, a set of updated recommendations was formulated for HCHO slant column retrieval in the 336.5-359 nm wavelength range. To conclude, an error budget is proposed which distinguishes between systematic and random uncertainties. The total systematic error is estimated to be of the order of 20 % and is dominated by uncertainties in absorption cross sections and related spectral cross-correlation effects. For a typical integration time of one minute, random uncertainties range between 5 and 30 %, depending on the noise level of individual instruments.