English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Geminin is required for the maintenance of pluripotency.

MPS-Authors
/persons/resource/persons15322

Kessel,  M.
Research Group of Developmental Biology, MPI for biophysical chemistry, Max Planck Society;

Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)

1849998.pdf
(Publisher version), 6MB

Supplementary Material (public)

1849998-Suppl-1.tif
(Supplementary material), 883KB

1849998-Suppl-2.tif
(Supplementary material), 732KB

1849998-Suppl-3.tif
(Supplementary material), 4MB

1849998-Suppl-4.tif
(Supplementary material), 252KB

1849998-Suppl-5.tif
(Supplementary material), 2MB

1849998-Suppl-6.tif
(Supplementary material), 2MB

1849998-Suppl-7.docx
(Supplementary material), 128KB

1849998-Suppl-8.docx
(Supplementary material), 123KB

Citation

Tabrizi, G. A., Böse, K., Reimann, Y., & Kessel, M. (2013). Geminin is required for the maintenance of pluripotency. PLoS One, 8(9): e73826. doi:10.1371/journal.pone.0073826.


Cite as: https://hdl.handle.net/11858/00-001M-0000-0014-75A9-6
Abstract
Pluripotency requires the expression of the three core transcriptions factors Oct4, Sox2 and Nanog, as well as further, complementary proteins. The geminin protein is part of this network, and was shown to play a role in the regulation of DNA replication, the control of the cell cycle, and the acquisition of neural fate. It is highly expressed in the early embryo, in particular the epiblast and the early neural ectoderm, and also in pluripotent embryonic stem cells. The genetic inactivation of geminin resulted in lethality after the first few cell divisions, and thus prohibited the outgrowth of pluripotent cells. We established embryonic stem cells allowing the deletion of the geminin gene by induction of of Cre-recombinase with tamoxifen. Here, we show that geminin deficiency quickly leads to a loss of pluripotency, and to differentiation into the mesendodermal direction with high Oct4/low Sox2 levels. Simultaneous loss of geminin and induction of the neural lineage resulted in immediate apoptosis. These results suggested that in early development geminin functions via the co-expressed Sox2 gene. We found that the stem cell enhancer SRR2 of Sox2 is occupied by the activating esBAF complex in the presence of geminin, but becomes epigenetically repressed in its absence by the Polycomb repressive complex PRC2. The importance of geminin for Sox2 expression also explains the absolute requirement for geminin during the induction of pluripotency by OSKM viruses. In summary, geminin is required for Sox2 expression, and thus for the maintenance of totipotency, pluripotency and the early neural lineage.