Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Measuring Boltzmann’s constant with a low-cost atomic force microscope: An undergraduate experiment.

MPG-Autoren
/persons/resource/persons14912

Burg,  T. P.
Research Group of Biological Micro- and Nanotechnology, MPI for biophysical chemistry, Max Planck Society;

Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Shusteff, M., Burg, T. P., & Manalis, S. R. (2006). Measuring Boltzmann’s constant with a low-cost atomic force microscope: An undergraduate experiment. American Journal of Physics, 74(10), 873-879. doi:10.1119/1.2335475.


Zitierlink: https://hdl.handle.net/11858/00-001M-0000-0014-9C9A-A
Zusammenfassung
We discuss a low-cost atomic force microscope that we have designed and built for use in an undergraduate teaching laboratory. This microscope gives students hands-on access to nano-Newton force measurements and subangstrom position measurements. The apparatus relies mainly on off-the-shelf components and utilizes an interferometric position sensor known as the interdigitated (ID) cantilever to obtain high resolution. The mechanical properties of the ID readout enable a robust and open design that makes it possible for students to directly control it. Its pedagogical advantage is that students interact with a complete instrument system and learn measurement principles in context. One undergraduate experiment enabled by this apparatus is a measurement of Boltzmann’s constant, which is done by recording the thermal noise power spectrum of a microfabricated cantilever beam. In addition to gaining an appreciation of the lower limits of position and force measurements, students learn to apply numerous concepts such as digital sampling, Fourier-domain analysis, noise sources, and error propagation.