日本語
 
Help Privacy Policy ポリシー/免責事項
  詳細検索ブラウズ

アイテム詳細


公開

学術論文

Suspended microchannel resonators for biomolecular detection.

MPS-Authors
/persons/resource/persons14912

Burg,  T. P.
Research Group of Biological Micro- and Nanotechnology, MPI for biophysical chemistry, Max Planck Society;

Fulltext (restricted access)
There are currently no full texts shared for your IP range.
フルテキスト (公開)
公開されているフルテキストはありません
付随資料 (公開)
There is no public supplementary material available
引用

Burg, T. P., & Manalis, S. R. (2003). Suspended microchannel resonators for biomolecular detection. Applied Physics Letters, 83(13), 2698-2700. doi:10.1063/1.1611625.


引用: https://hdl.handle.net/11858/00-001M-0000-0014-9CE1-8
要旨
We present a resonant mass sensor for specific biomolecular detection in a subnanoliter fluid volume. The sensing principle is based on measuring shifts in resonance frequency of a suspended microfluidic channel upon accumulation of molecules on the inside walls of the device. Confining the fluid to the inside of a hollow cantilever enables direct integration with conventional microfluidic systems, significantly increases sensitivity by eliminating high damping and viscous drag, and allows the resonator to be actuated by electrostatic forces. Fluid density measurements reveal a mass resolution of 10−17 g/μm2 in a 4 mHz–4 Hz bandwidth. To demonstrate biomolecular detection, we present real-time measurements of the specific binding between avidin and biotinylated bovine serum albumin. Based on these measurements, we expect that changes in surface mass loading on the order of 10−19 g/μm2 can be detected in an optimized system.