Help Privacy Policy Disclaimer
  Advanced SearchBrowse




Journal Article

Winter precipitation variability over Korean Peninsula associated with ENSO


Park,  Jong-Yeon
Climate Dynamics, The Atmosphere in the Earth System, MPI for Meteorology, Max Planck Society;
IMPRS on Earth System Modelling, MPI for Meteorology, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available

Son, H.-Y., Park, J.-Y., Kug, J.-S., Yoo, J., & Kim, C.-H. (2014). Winter precipitation variability over Korean Peninsula associated with ENSO. Climate Dynamics, 42, 3171-3186. doi:10.1007/s00382-013-2008-1.

Cite as: https://hdl.handle.net/11858/00-001M-0000-0014-C077-C
In this study, winter precipitation variability associated with the El Niño-Southern Oscillation (ENSO) over the Korean Peninsula was investigated using a 5-pentad running mean data because significant correlation pattern cannot be revealed using seasonal-mean data. It was found a considerably significant positive correlation between Niño3 sea-surface temperature and precipitation during early winter (from Mid-November to early-December), when the correlation coefficient is close to 0.8 in early-December; the correlation is distinctively weakened during late winter. It is demonstrated that such sudden intraseasonal change in relation to ENSO is associated with the presence of anticyclonic flow over the Kuroshio extension region (Kuroshio anticyclone). In early winter, there is strong southerly wind over the Korean Peninsula, which is induced by the Philippine Sea anticyclone and Kuroshio anticyclone. However, in January, although the Philippine Sea anticyclone develops further, the Kuroshio anticyclone suddenly disappears; as a result, the impact of ENSO is considerably weakened over the Korean Peninsula. These results indicate that the Kuroshio anticyclone during El Niño peak phase plays a critical role by strongly affecting Northeast Asia climate, including the Korean Peninsula. In addition, it is also found that there are distinctive interdecadal changes of the relationship between ENSO and precipitation over the Korean Peninsula. In particular, the strong correlation in early winter is clearer in the recent 30 years than that in the previous period of 1950-1979. © 2013 Springer-Verlag Berlin Heidelberg.