English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

The fatty acyl-CoA reductase Waterproof mediates airway clearance in Drosophila.

MPS-Authors
/persons/resource/persons32558

Jaspers,  M. H. J.
Research Group of Molecular Organogenesis, MPI for biophysical chemistry, Max Planck Society;

/persons/resource/persons15636

Pflanz,  R.
Department of Molecular Developmental Biology, MPI for biophysical chemistry, Max Planck Society;

/persons/resource/persons15710

Riedel,  D.
Facility for Electron Microscopy, MPI for biophysical chemistry, Max Planck Society;

/persons/resource/persons15806

Schuh,  R.
Research Group of Molecular Organogenesis, MPI for biophysical chemistry, Max Planck Society;

Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)

1900341.pdf
(Publisher version), 3MB

Supplementary Material (public)
There is no public supplementary material available
Citation

Jaspers, M. H. J., Pflanz, R., Riedel, D., Kawelke, S., Feussner, I., & Schuh, R. (2014). The fatty acyl-CoA reductase Waterproof mediates airway clearance in Drosophila. Developmental Biology, 385(1), 23-31. doi:10.1016/j.ydbio.2013.10.022.


Cite as: https://hdl.handle.net/11858/00-001M-0000-0015-0F0D-A
Abstract
The transition from a liquid to a gas filled tubular network is the prerequisite for normal function of vertebrate lungs and invertebrate tracheal systems. However, the mechanisms underlying the process of gas filling remain obscure. Here we show that waterproof encoding a fatty acyl-CoA reductase (FAR), is essential for the gas filling of the tracheal tubes during Drosophila embryogenesis, and does not affect branch network formation or key tracheal maturation processes. However, electron microscopic analysis reveals that in waterproof mutant embryos the formation of the outermost tracheal cuticle sublayer, the envelope, is disrupted and the hydrophobic tracheal coating is damaged. Genetic and gain-of-function experiments indicate a non-cell-autonomous waterproof function for the beginning of the tracheal gas filling process. Interestingly, Waterproof reduces very long chain fatty acids of 24 and 26 carbon atoms to fatty alcohols. Thus, we propose that Waterproof plays a key role in tracheal gas filling by providing very long chain fatty alcohols that serve as potential substrates for wax ester synthesis or related hydrophobic substances that ultimately coat the inner lining of the trachea. The hydrophobicity in turn reduces the tensile strength of the liquid inside the trachea, leading to the formation of a gas bubble, the focal point for subsequent gas filling. Waterproof represents the first enzyme described to date that is necessary for tracheal gas filling without affecting branch morphology. Considering its conservation throughout evolution, Waterproof orthologues may play a similar role in the vertebrate lung.