Deutsch
 
Benutzerhandbuch Datenschutzhinweis Impressum Kontakt
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

TempoNest: A Bayesian approach to pulsar timing analysis

MPG-Autoren
/persons/resource/persons86728

van Haasteren,  Rutger
Observational Relativity and Cosmology, AEI-Hannover, MPI for Gravitational Physics, Max Planck Society;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)

1310.2120.pdf
(Preprint), 10MB

MNRAS3004.full.pdf
(beliebiger Volltext), 10MB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Lentati, L., Alexander, P., Hobson, M. P., Feroz, F., van Haasteren, R., Lee, K., et al. (2014). TempoNest: A Bayesian approach to pulsar timing analysis. Monthly Notices of the Royal Astronomical Society, 437(3), 3004-3023. doi:10.1093/mnras/stt2122.


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-0015-1148-8
Zusammenfassung
A new Bayesian software package for the analysis of pulsar timing data is presented in the form of TempoNest which allows for the robust determination of the non-linear pulsar timing solution simultaneously with a range of additional stochastic parameters. This includes both red spin noise and dispersion measure variations using either power law descriptions of the noise, or through a model-independent method that parameterises the power at individual frequencies in the signal. We use TempoNest to show that at noise levels representative of current datasets in the European Pulsar Timing Array (EPTA) and International Pulsar Timing Array (IPTA) the linear timing model can underestimate the uncertainties of the timing solution by up to an order of magnitude. We also show how to perform Bayesian model selection between different sets of timing model and stochastic parameters, for example, by demonstrating that in the pulsar B1937+21 both the dispersion measure variations and spin noise in the data are optimally modelled by simple power laws. Finally we show that not including the stochastic parameters simultaneously with the timing model can lead to unpredictable variation in the estimated uncertainties, compromising the robustness of the scientific results extracted from such analysis.