Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Time-Continuous Bell Measurements

MPG-Autoren

Vasilyev,  Denis V.
Laser Interferometry & Gravitational Wave Astronomy, AEI-Hannover, MPI for Gravitational Physics, Max Planck Society;

/persons/resource/persons124270

Hammerer,  Klemens
Laser Interferometry & Gravitational Wave Astronomy, AEI-Hannover, MPI for Gravitational Physics, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)

1303.4976.pdf
(Preprint), 757KB

PRL111_170404.pdf
(beliebiger Volltext), 436KB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Hofer, S. G., Vasilyev, D. V., Aspelmeyer, M., & Hammerer, K. (2013). Time-Continuous Bell Measurements. Physical Review Letters, 111: 170404. doi:10.1103/PhysRevLett.111.170404.


Zitierlink: https://hdl.handle.net/11858/00-001M-0000-0015-11B3-3
Zusammenfassung
We combine the concept of Bell measurements, in which two systems are projected into a maximally entangled state, with the concept of continuous measurements, which concerns the evolution of a continuously monitored quantum system. For such time-continuous Bell measurements we derive the corresponding stochastic Schr\"odinger equations, as well as the unconditional feedback master equations. Our results apply to a wide range of physical systems, and are easily adapted to describe an arbitrary number of systems and measurements. Time-continuous Bell measurements therefore provide a versatile tool for the control of complex quantum systems and networks. As examples we show show that (i) two two-level systems can be deterministically entangled via homodyne detection, tolerating photon loss up to 50%, and (ii) a quantum state of light can be continuously teleported to a mechanical oscillator, which works under the same conditions as are required for optomechanical ground state cooling.