English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

The ENIGMA Consortium: Large-scale collaborative analyses of neuroimaging and genetic data

MPS-Authors
/persons/resource/persons4427

Fisher,  Simon E.
Language and Genetics Department, MPI for Psycholinguistics, Max Planck Society;

/persons/resource/persons4382

Francks,  Clyde
Language and Genetics Department, MPI for Psycholinguistics, Max Planck Society;
Imaging Genomics, MPI for Psycholinguistics, Max Planck Society;

/persons/resource/persons22322

Guadalupe,  Tulio
Language and Genetics Department, MPI for Psycholinguistics, Max Planck Society;
International Max Planck Research School for Language Sciences, MPI for Psycholinguistics, Max Planck Society, Nijmegen, NL;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)

thompson_etal_2014.pdf
(Publisher version), 2MB

Supplementary Material (public)
There is no public supplementary material available
Citation

Thompson, P. M., Stein, J. L., Medland, S. E., Hibar, D. P., Vasquez, A. A., Renteria, M. E., et al. (2014). The ENIGMA Consortium: Large-scale collaborative analyses of neuroimaging and genetic data. Brain Imaging and Behavior, 8(2), 153-182. doi:10.1007/s11682-013-9269-5.


Cite as: https://hdl.handle.net/11858/00-001M-0000-0015-1419-9
Abstract
The Enhancing NeuroImaging Genetics through Meta-Analysis (ENIGMA) Consortium is a collaborative network of researchers working together on a range of large-scale studies that integrate data from 70 institutions worldwide. Organized into Working Groups that tackle questions in neuroscience, genetics, and medicine, ENIGMA studies have analyzed neuroimaging data from over 12,826 subjects. In addition, data from 12,171 individuals were provided by the CHARGE consortium for replication of findings, in a total of 24,997 subjects. By meta-analyzing results from many sites, ENIGMA has detected factors that affect the brain that no individual site could detect on its own, and that require larger numbers of subjects than any individual neuroimaging study has currently collected. ENIGMA’s first project was a genome-wide association study identifying common variants in the genome associated with hippocampal volume or intracranial volume. Continuing work is exploring genetic associations with subcortical volumes (ENIGMA2) and white matter microstructure (ENIGMA-DTI). Working groups also focus on understanding how schizophrenia, bipolar illness, major depression and attention deficit/hyperactivity disorder (ADHD) affect the brain. We review the current progress of the ENIGMA Consortium, along with challenges and unexpected discoveries made on the way