Deutsch
 
Benutzerhandbuch Datenschutzhinweis Impressum Kontakt
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Animation Cartography - Intrinsic Reconstruction of Shape and Motion

MPG-Autoren
/persons/resource/persons45604

Tevs,  Art
Computer Graphics, MPI for Informatics, Max Planck Society;

/persons/resource/persons44123

Berner,  Alexander
Computer Graphics, MPI for Informatics, Max Planck Society;

/persons/resource/persons45695

Wand,  Michael
Computer Graphics, MPI for Informatics, Max Planck Society;

/persons/resource/persons44670

Ihrke,  Ivo
Computer Graphics, MPI for Informatics, Max Planck Society;

/persons/resource/persons44158

Bokeloh,  Martin
Computer Graphics, MPI for Informatics, Max Planck Society;

/persons/resource/persons44758

Kerber,  Jens
Computer Graphics, MPI for Informatics, Max Planck Society;

/persons/resource/persons45449

Seidel,  Hans-Peter
Computer Graphics, MPI for Informatics, Max Planck Society;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Tevs, A., Berner, A., Wand, M., Ihrke, I., Bokeloh, M., Kerber, J., et al. (2012). Animation Cartography - Intrinsic Reconstruction of Shape and Motion. ACM Transactions on Graphics, 31(2), 1-15. doi:10.1145/2159516.2159517.


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-0015-161E-9
Zusammenfassung
In this paper, we consider the problem of animation reconstruction, i.e., the reconstruction of shape and motion of a deformable object from dynamic 3D scanner data, without using user provided template models. Unlike previous work that addressed this problem, we do not rely on locally convergent optimization but present a system that can handle fast motion, temporally disrupted input, and can correctly match objects that disappear for extended time periods in acquisition holes due to occlusion. Our approach is motivated by cartography: We first estimate a few landmark correspondences, which are extended to a dense matching and then used to reconstruct geometry and motion. We propose a number of algorithmic building blocks: a scheme for tracking landmarks in temporally coherent and incoherent data, an algorithm for robust estimation of dense correspondences under topological noise, and the integration of local matching techniques to refine the result. We describe and evaluate the individual components and propose a complete animation reconstruction pipeline based on these ideas. We evaluate our method on a number of standard benchmark data sets and show that we can obtain correct reconstructions in situations where other techniques fail completely or require additional user guidance such as a template model.