English
 
User Manual Privacy Policy Disclaimer Contact us
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Conference Paper

Maximum Entropy Models for Iteratively Identifying Subjectively Interesting Structure in Real-valued Data

MPS-Authors
/persons/resource/persons79525

Vreeken,  Jilles
Databases and Information Systems, MPI for Informatics, Max Planck Society;

External Ressource
No external resources are shared
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Kontonasios, K.-N., Vreeken, J., & De Bie, T. (2013). Maximum Entropy Models for Iteratively Identifying Subjectively Interesting Structure in Real-valued Data. In H. Blockeel, K. Kersting, S. Nijssen, & F. Želenzný (Eds.), Machine Learning and Knowledge Discovery in Databases (pp. 256-271). Berlin: Springer. doi:10.1007/978-3-642-40991-2_17.


Cite as: http://hdl.handle.net/11858/00-001M-0000-0015-1CCC-4
Abstract
There is no abstract available