Deutsch
 
Benutzerhandbuch Datenschutzhinweis Impressum Kontakt
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Konferenzbeitrag

Human Computing Games for Knowledge Acquisition

MPG-Autoren
/persons/resource/persons44821

Kondreddi,  Sarath Kumar
Databases and Information Systems, MPI for Informatics, Max Planck Society;

/persons/resource/persons45720

Weikum,  Gerhard
Databases and Information Systems, MPI for Informatics, Max Planck Society;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Kondreddi, S. K., Triantafillou, P., & Weikum, G. (2013). Human Computing Games for Knowledge Acquisition. In W. Nejdl, J. Pei, & R. Rastogi (Eds.), CIKM'13 (pp. 2513-2516). New York, NY: ACM. doi:10.1145/2505515.2508213.


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-0015-1C65-8
Zusammenfassung
Automatic information extraction techniques for knowledge acquisition are known to produce noise, incomplete or incorrect facts from textual sources. Human computing offers a natural alternative to expand and complement the output of automated information extraction methods, thereby enabling us to build high-quality knowledge bases. However, relying solely on human inputs for extraction can be prohibitively expensive in practice. We demonstrate human computing games for knowledge acquisition that employ human computing to overcome the limitations in automated fact acquisition methods. We provide a combined approach that tightly integrates automated extraction techniques with human computing for effective gathering of facts. The methods we provide gather facts in the form of relationships between entities. The games we demonstrate are specifically designed to capture hard-to-extract relations between entities in narrative text -- a task that automated systems find challenging.