Deutsch
 
Benutzerhandbuch Datenschutzhinweis Impressum Kontakt
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

A Correlated Parts Model for Object Detection in Large 3D Scans

MPG-Autoren
/persons/resource/persons45577

Sunkel,  Martin
Computer Graphics, MPI for Informatics, Max Planck Society;

/persons/resource/persons44696

Jansen,  Silke
Computer Graphics, MPI for Informatics, Max Planck Society;

/persons/resource/persons45695

Wand,  Michael
Computer Graphics, MPI for Informatics, Max Planck Society;

/persons/resource/persons45449

Seidel,  Hans-Peter
Computer Graphics, MPI for Informatics, Max Planck Society;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Sunkel, M., Jansen, S., Wand, M., & Seidel, H.-P. (2013). A Correlated Parts Model for Object Detection in Large 3D Scans. Computer Graphics Forum, 32(2), 205-214. doi:10.1111/cgf.12040.


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-0015-1CE6-8
Zusammenfassung
This paper addresses the problem of detecting objects in 3D scans according to object classes learned from sparse user annotation. We model objects belonging to a class by a set of fully correlated parts, encoding dependencies between local shapes of different parts as well as their relative spatial arrangement. For an efficient and comprehensive retrieval of instances belonging to a class of interest, we introduce a new approximate inference scheme and a corresponding planning procedure. We extend our technique to hierarchical composite structures, reducing training effort and modeling spatial relations between detected instances. We evaluate our method on a number of real-world 3D scans and demonstrate its benefits as well as the performance of the new inference algorithm.