Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Spin excitons in the unconventional superconducting and hidden order state of strongly correlated electrons

MPG-Autoren
/persons/resource/persons126879

Thalmeier,  P.
Peter Thalmeier, Physics of Correlated Matter, Max Planck Institute for Chemical Physics of Solids, Max Planck Society;

/persons/resource/persons126509

Akbari,  A.
Max Planck Institute for Chemical Physics of Solids, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Thalmeier, P., & Akbari, A. (2013). Spin excitons in the unconventional superconducting and hidden order state of strongly correlated electrons. European Physical Journal B, 86(3): 82, pp. 82-1-82-6. doi:10.1140/epjb/e2012-30896-0.


Zitierlink: https://hdl.handle.net/11858/00-001M-0000-0015-1F26-2
Zusammenfassung
The formation of collective spin excitons below the single particle continuum is observed in numerous unconventional superconductors. CeCoIn5 is the most well established case for heavy fermion compounds. It is also the first example where the splitting of magnetic excitons by a magnetic field is observed for fields within the tetragonal plane. Contrary to expectations it is revealed as a doublet excitation. We explain the splitting as the result of a strongly anisotropic spin response described within the context of an Anderson lattice type model. Recently it was shown that collective spin excitations also appear within the hidden order phase of non- superconducting CeB6. It is a signature of the itinerant nature of spin response as opposed to the commonly used localized 4f approach in this compound. We show that the salient features of the spin exciton can be explained in an itinerant quasiparticle model supplemented by hidden and antiferromagnetic order.