Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Metal-insulator transition in the quarter-filled frustrated checkerboard lattice

MPG-Autoren
/persons/resource/persons126921

Yushankhai,  V.
Max Planck Institute for Chemical Physics of Solids, Max Planck Society;

/persons/resource/persons126879

Thalmeier,  P.
Peter Thalmeier, Physics of Correlated Matter, Max Planck Institute for Chemical Physics of Solids, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Zhang, Y. Z., Tran, M.-T., Yushankhai, V., & Thalmeier, P. (2005). Metal-insulator transition in the quarter-filled frustrated checkerboard lattice. The European Physical Journal B, Condensend Matter Physics, 44(3), 265-276. doi:10.1140/epjb/e2005-00125-4.


Zitierlink: https://hdl.handle.net/11858/00-001M-0000-0015-2CA3-1
Zusammenfassung
We study the electronic structure and correlations in the geometrically frustrated two dimensional checkerboard lattice. In the large U limit considered here we start from an extended Hubbard model of spinless fermions at half-filling. We investigate the model within two distinct Green’s function approaches: In the first approach a single-site representation decoupling scheme is used that includes the effect of nearest neighbor charge fluctuations. In the second approach a cluster representation leading to a ‘multiorbital’ model is investigated which includes intra-cluster correlations more rigorously and those between clusters on a mean field basis. It is demonstrated that with increasing nearest-neighbor Coulomb interaction V both approaches lead to a metal-insulator transition with an associated ‘Mott-Hubbard’ like gap caused by V. Within the single site approach we also explore the possibility of charge order. Furthermore we investigate the evolution of the quasiparticle bands as funtion of V.