Deutsch
 
Benutzerhandbuch Datenschutzhinweis Impressum Kontakt
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Coexistence of antiferromagnetism and superconductivity in heavy-fermion systems

MPG-Autoren
/persons/resource/persons126614

Geibel,  C.
Christoph Geibel, Physics of Quantum Materials, Max Planck Institute for Chemical Physics of Solids, Max Planck Society;

/persons/resource/persons126861

Steglich,  F.
Frank Steglich, Physics of Quantum Materials, Max Planck Institute for Chemical Physics of Solids, Max Planck Society;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Kitaoka, Y., Kawasaki, Y., Mito, T., Kawasaki, S., Zheng, G. Q., Ishida, K., et al. (2002). Coexistence of antiferromagnetism and superconductivity in heavy-fermion systems. Journal of Physics and Chemistry of Solids, 63(6-8), 1141-1146. doi:10.1016/S0022-3697(02)00133-6.


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-0015-3147-8
Zusammenfassung
We report the novel pressure (P)-temperature (T) phase diagrams of antiferromagnetism (AFM) and superconductivity (SC) in CeRhIn5, CeIn3, and CeCu2Si2 revealed by the nuclear quadrupole resonance measurement. In the itinerant helical magnet CeRhIn5, we found that the Neel temperature T-N is reduced at P greater than or equal to 1.23 GPa with an emergent pseudogap behavior. The coexistence of AFM and SC is found in a narrow P range of 1.63-1.75 GPa, followed by the onset of SC with line-node gap over a wide P window 2.1-5 GPa. In CeIn3, the localized magnetic character is robust against the application of pressure up to P similar to 1.9 GPa, beyond which the system evolves into an itinerant regime in which the resistive superconducting phase emerges. We discuss the relationship between the phase diagram and the magnetic fluctuations. In CeCu2Si2, the SC and AFM coexist on a microscopic level once its lattice parameter is expanded. We remark that the underlying marginal AFM state is due to collective magnetic excitations in the superconducting state in CeCu2Si2. An interplay between AFM and SC is discussed on the SO(5) scenario that unifies AFM and SC. We suggest that the SC and AFM in CeCu2Si2 have a common mechanism. (C) 2002 Elsevier Science Ltd. All rights reserved.