Deutsch
 
Benutzerhandbuch Datenschutzhinweis Impressum Kontakt
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Variation in diatom biochemical composition during a simulated bloom and its effect on copepod production

MPG-Autoren
Es sind keine MPG-Autoren in der Publikation vorhanden
Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Diekmann, A. B. S., Peck, M. A., Holste, L., St John, M. A., & Campbell, R. W. (2009). Variation in diatom biochemical composition during a simulated bloom and its effect on copepod production. JOURNAL OF PLANKTON RESEARCH, 31(11), 1391-1405. doi:10.1093/plankt/fbp073.


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-0018-1C9E-1
Zusammenfassung
The biochemical quality of phytoplankton depends in part upon nutrient availability, which has implications for the population dynamics of grazers. Here, we examined how nutrient availability influenced the growth dynamics and biochemical content of the marine diatom Thalassiosira weissflogii and how these biochemical changes impacted the vital rates of a calanoid copepod (Acartia tonsa). Changes in biochemistry (protein, carbohydrate and fatty acids) were compared in diatom cultures that simulated bloom conditions (B-algae) and those maintained in near exponential growth (E-algae) over the course of a 16-day experiment. Egg production rates (EPRs, eggs female(-1) day(-1)) and the developmental success of copepodite stages of A. tonsa fed these different diets were quantified. Copepod EPR was significantly lower (reduced by half) when B-algae entered the senescent phase due to silicate limitation. In a crossover (diet switch) experiment, EPR increased when copepods fed B-algae were switched to E-algae and vice versa. Copepodites of A. tonsa developed normally and reached the adult (C6) stage when fed E-algae, but ceased development (approximately at stage C2) when reared on senescent phase B-algae. Given the importance of copepods as prey for higher trophic levels, our results highlight how nutritional changes that naturally occur during a phytoplankton bloom may influence the productivity of copepods and higher trophic levels.