English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Toward a more accurate Q value measurement of tritium: status of THe-Trap

MPS-Authors
/persons/resource/persons59558

Streubel,  Sebastian
Division Prof. Dr. Klaus Blaum, MPI for Nuclear Physics, Max Planck Society;

/persons/resource/persons81057

Eronen,  Tommi
Division Prof. Dr. Klaus Blaum, MPI for Nuclear Physics, Max Planck Society;

/persons/resource/persons30602

Höcker,  Martin
Division Prof. Dr. Klaus Blaum, MPI for Nuclear Physics, Max Planck Society;

/persons/resource/persons30667

Ketter,  Jochen
Division Prof. Dr. Klaus Blaum, MPI for Nuclear Physics, Max Planck Society;

/persons/resource/persons59399

Schuh,  Marc
Division Prof. Dr. Klaus Blaum, MPI for Nuclear Physics, Max Planck Society;

/persons/resource/persons30312

Blaum,  Klaus
Division Prof. Dr. Klaus Blaum, MPI for Nuclear Physics, Max Planck Society;

External Resource
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Streubel, S., Eronen, T., Höcker, M., Ketter, J., Schuh, M., Van Dyck, R. J., et al. (2014). Toward a more accurate Q value measurement of tritium: status of THe-Trap. Applied Physics B: Lasers and Optics, 114(1-2), 137-145. doi:10.1007/s00340-013-5669-x.


Cite as: https://hdl.handle.net/11858/00-001M-0000-0015-38CB-6
Abstract
The goal of the THe-Trap experiment is to measure the tritium/helium-3 mass ratio in order to deduce the Q value of the tritium β-decay. A relative uncertainty of 10 parts per trillion in the mass ratio would allow determining the Q value with a precision of 30 meV. This value is of relevance for the Karlsruhe Tritium Neutrino (KATRIN) collaboration, which is building a spectrometer to measure the mass of the electron antineutrino. In this contribution, we present the progress made in the past 2 years. We can, e.g., store, manipulate and detect single ions. To demonstrate the current accuracy, we measured the carbon-12 to oxygen-16 mass ratio with a relative uncertainty of 120 parts per trillion in early 2013. The improvements, current status and future perspectives will be presented.