Deutsch
 
Benutzerhandbuch Datenschutzhinweis Impressum Kontakt
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Konferenzbeitrag

Unambiguous Conjunctive Grammars over a One-letter Alphabet

MPG-Autoren
/persons/resource/persons79297

Jeż,  Artur
Algorithms and Complexity, MPI for Informatics, Max Planck Society;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Jeż, A., & Okhotin, A. (2013). Unambiguous Conjunctive Grammars over a One-letter Alphabet. In M.-P. Beal, & O. Carton (Eds.), Developments in Language Theory (pp. 277-288). Berlin: Springer. doi:10.1007/978-3-642-38771-5_25.


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-0015-3F37-D
Zusammenfassung
It is demonstrated that unambiguous conjunctive grammars over a unary alphabet Σ=a} have non-trivial expressive power, and that their basic properties are undecidable. The key result is that for every base k ≥qslant 11 and for every one-way real-time cellular automaton operating over the alphabet of base-k digits \big{\lfloor\frac{k+9}{4}\rfloor, \ldots, \lfloor\frac{k+1}{2}\rfloor\big, the language of all strings a^n with the base-k notation of the form \D1w\D1, where w is accepted by the automaton, is generated by an unambiguous conjunctive grammar. Another encoding is used to simulate a cellular automaton in a unary language containing almost all strings. These constructions are used to show that for every fixed unambiguous conjunctive language L_0, testing whether a given unambiguous conjunctive grammar generates L_0 is undecidable.