日本語
 
Help Privacy Policy ポリシー/免責事項
  詳細検索ブラウズ

アイテム詳細


公開

学術論文

Crystal structure of the breakpoint cluster region homology domain from phosphoinositide 3-kinase p85 alpha subunit

MPS-Authors
/persons/resource/persons98714

Musacchio,  Andrea
Abt. I:Mechanistische Zellbiologie, Max Planck Institute of Molecular Physiology, Max Planck Society;

External Resource
There are no locators available
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
フルテキスト (公開)
公開されているフルテキストはありません
付随資料 (公開)
There is no public supplementary material available
引用

Musacchio, A., Cantley, L. C., & Harrison, S. C. (1996). Crystal structure of the breakpoint cluster region homology domain from phosphoinositide 3-kinase p85 alpha subunit. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 93(25), 14373-14378. doi:10.1073/pnas.93.25.14373.


引用: https://hdl.handle.net/11858/00-001M-0000-0015-3B2B-7
要旨
Proteins such as the product of the breakpoint cluster region, chimaerin, and the Src homology 3-binding protein 3BP1, are GTPase activating proteins (GAPs) for members of the Rho subfamily of small GTP-binding proteins (G proteins or GTPases). A 200-residue region, named the breakpoint cluster region homology (BH) domain, is responsible for the GAP activity. We describe here the crystal structure of the BH domain from the p85 subunit of phosphatidylinositol 3-kinase at 2.0 Angstrom resolution. The domain is composed of seven helices, having a previously unobserved arrangement. A core of four helices contains most residues that are conserved in the BH family. Their packing suggests the location of a G-protein binding site. This structure of a GAP-like domain for small GTP-binding proteins provides a framework for analyzing the function of this class of molecules.