日本語
 
Help Privacy Policy ポリシー/免責事項
  詳細検索ブラウズ

アイテム詳細


公開

講演

Competitive adsorption isotherms using single component discrete isotherm data

MPS-Authors
/persons/resource/persons86455

Rubiera Landa,  Hector O.
Physical and Chemical Foundations of Process Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Max Planck Society;

/persons/resource/persons86477

Seidel-Morgenstern,  Andreas
Physical and Chemical Foundations of Process Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Max Planck Society;
Otto-von-Guericke-Universität Magdeburg, External Organizations;

External Resource
There are no locators available
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
フルテキスト (公開)
公開されているフルテキストはありません
付随資料 (公開)
There is no public supplementary material available
引用

Rubiera Landa, H. O., Rajendran, A., & Seidel-Morgenstern, A. (2014). Competitive adsorption isotherms using single component discrete isotherm data. Talk presented at 10th International PhD Seminar on Chromatographic Separation Science. Egmond aan Zee, The Netherlands. 2014-02-23 - 2014-02-25.


引用: https://hdl.handle.net/11858/00-001M-0000-0017-E58A-0
要旨
In this contribution we extend the application of single component discrete adsorption isotherm data introduced in [1] to predict competitive adsorption isotherms using Ideal Adsorbed Solution Theory (IAST) [2,3]. An efficient solution approach to solve the IAST equations introduced recently [4] enables a direct use of discrete data isotherms generated from measured adsorption equilibrium points for single compounds, while providing insight on necessary strategies to extrapolate single component adsorption equilibria beyond measured concentration ranges. A detailed analysis of the resulting errors in the multicomponent adsorption equilibrium prediction for simple artificial data generated with the Langmuir isotherm equation, using two simple extrapolation strategies to extend the single component adsorption equilibrium, is presented. The potential application of the concepts introduced above to predict dynamic breakthrough curves in fixed-bed adsorbers (e.g., chromatographic columns) for multicomponent systems is also discussed. [1] Haghpanah R, Rajendran A, Farooq S, Karimi IA, Amanullah M. Discrete Equilibrium Data from Dynamic Column Breakthrough Experiments. Ind Eng Chem Res. 2012;51:14834-14844. [2] Myers AL, Prausnitz JM. Thermodynamics of mixed-gas adsorption. AIChE J. 1965;11:121-127. [3] Radke CJ, Prausnitz JM. Thermodynamics of multi-solute adsorption from dilute liquid solutions. AIChE J. 1972;18:761-768. [4] Rubiera Landa HO, Flockerzi D, Seidel-Morgenstern A. A Method for Efficiently Solving the IAST Equations with an Application to Adsorber Dynamics. AIChE J. 2013;59(4):1263-1277.