English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Conference Paper

A Machine Learning Approach for Non-blind Image Deconvolution

MPS-Authors
/persons/resource/persons84198

Schuler,  C. J.
Dept. Empirical Inference, Max Planck Institute for Intelligent Systems, Max Planck Society;

/persons/resource/persons83841

Burger,  HC
Dept. Empirical Inference, Max Planck Institute for Intelligent Systems, Max Planck Society;

/persons/resource/persons83954

Harmeling,  S.
Dept. Empirical Inference, Max Planck Institute for Intelligent Systems, Max Planck Society;

/persons/resource/persons84193

Schölkopf,  B.
Dept. Empirical Inference, Max Planck Institute for Intelligent Systems, Max Planck Society;

External Resource
No external resources are shared
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Schuler, C. J., Burger, H., Harmeling, S., & Schölkopf, B. (2013). A Machine Learning Approach for Non-blind Image Deconvolution. In 2013 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 1067-1074). Piscataway, NJ: IEEE. doi:10.1109/CVPR.2013.142.


Cite as: http://hdl.handle.net/11858/00-001M-0000-0017-F3B7-F
Abstract
There is no abstract available