Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Estimating the final spin of a binary black hole coalescence

MPG-Autoren
/persons/resource/persons127862

Buonanno,  Alessandra
Astrophysical and Cosmological Relativity, AEI-Golm, MPI for Gravitational Physics, Max Planck Society;
Maryland Center for Fundamental Physics, Department of Physics, University of Maryland,;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)

0709.3839.pdf
(Preprint), 202KB

PhysRevD.77_026004.pdf
(beliebiger Volltext), 326KB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Buonanno, A., Kidder, L. E., & Lehner, L. (2008). Estimating the final spin of a binary black hole coalescence. Physical Review D, 026004. doi:10.1103/PhysRevD.77.026004.


Zitierlink: https://hdl.handle.net/11858/00-001M-0000-0017-F9F4-A
Zusammenfassung
We present a straightforward approach for estimating the final black hole spin of a binary black hole coalescence with arbitrary initial masses and spins. Making some simple assumptions, we estimate the final angular momentum to be the sum of the individual spins plus the orbital angular momentum of a test particle orbiting at the last stable orbit around a Kerr black hole with a spin parameter of the final black hole. The formula we obtain is able to reproduce with reasonable accuracy the results from available numerical simulations, but, more importantly, it can be used to investigate what configurations might give rise to interesting dynamics. In particular, we discuss scenarios which might give rise to a ``flip'' in the direction of the total angular momentum of the system. By studying the dependence of the final spin upon the mass ratio and initial spins we find that our simple approach suggests that it is not possible to spin-up a black hole to extremal values through merger scenarios irrespective of the mass ratio of the objects involved.