Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Functional diversity of leaf nitrogen concentrations drives grassland carbon fluxes

MPG-Autoren
/persons/resource/persons128340

Guderle,  Marcus
IMPRS International Max Planck Research School for Global Biogeochemical Cycles, Max Planck Institute for Biogeochemistry, Max Planck Society;

/persons/resource/persons62384

Gleixner,  Gerd
Molecular Biogeochemistry Group, Dr. G. Gleixner, Department Biogeochemical Processes, Prof. S. E. Trumbore, Max Planck Institute for Biogeochemistry, Max Planck Society;

/persons/resource/persons130971

Hildebrandt,  Antje
FSU Jena Research Group Ecohydrology, Dr. A. Hildebrandt, Max Planck Institute for Biogeochemistry , Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Milcu, A., Roscher, C., Bachmann, D., Gockele, A., Guderle, M., Landais, D., et al. (2014). Functional diversity of leaf nitrogen concentrations drives grassland carbon fluxes. Ecology Letters, 17(4), 435-444. doi:10.1111/ele.12243.


Zitierlink: https://hdl.handle.net/11858/00-001M-0000-0018-0C66-F
Zusammenfassung
Little is known about the role of plant functional diversity for ecosystem-level carbon (C) fluxes.
To fill this knowledge gap, we translocated monoliths hosting communities with four and 16 sown
species from a long-term grassland biodiversity experiment (‘The Jena Experiment’) into a controlled
environment facility for ecosystem research (Ecotron). This allowed quantifying the effects
of plant diversity on ecosystem C fluxes as well as three parameters of C uptake efficiency (water
and nitrogen use efficiencies and apparent quantum yield). By combining data on ecosystem C
fluxes with vegetation structure and functional trait-based predictors, we found that increasing
plant species and functional diversity led to higher gross and net ecosystem C uptake rates. Path
analyses and light response curves unravelled the diversity of leaf nitrogen concentration in the
canopy as a key functional predictor of C fluxes, either directly or indirectly via LAI and aboveground biomass.