日本語
 
Help Privacy Policy ポリシー/免責事項
  詳細検索ブラウズ

アイテム詳細


公開

学術論文

Maintaining photosynthetic CO2 fixation via protein remodelling: the Rubisco activases

MPS-Authors
/persons/resource/persons77798

Bracher,  Andreas
Hartl, Franz-Ulrich / Cellular Biochemistry, Max Planck Institute of Biochemistry, Max Planck Society;

External Resource
There are no locators available
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
フルテキスト (公開)
公開されているフルテキストはありません
付随資料 (公開)
There is no public supplementary material available
引用

Mueller-Cajar, O., Stotz, M., & Bracher, A. (2014). Maintaining photosynthetic CO2 fixation via protein remodelling: the Rubisco activases. Photosynthesis Research, 119(1-2), 191-201. doi:10.1007/s11120-013-9819-0.


引用: https://hdl.handle.net/11858/00-001M-0000-0018-7AE0-7
要旨
The key photosynthetic, CO2-fixing enzyme Rubisco forms inactivated complexes with its substrate ribulose 1,5-bisphosphate (RuBP) and other sugar phosphate inhibitors. The independently evolved AAA? proteins Rubisco activase and CbbX harness energy from ATP hydrolysis to remodel Rubisco complexes, facilitating release of these inhibitors. Here, we discuss recent structural and mechanistic advances towards the understanding of protein-mediated Rubisco activation. Both activating proteins appear to form ring-shaped hexameric arrangements typical for AAA? ATPases in their functional form, but display very different regulatory and biochemical properties. Considering the thermolability of the plant enzyme, an improved understanding of the mechanism for Rubisco activation may help in developing heat-resistant plants adapted to the challenge of global warming.