English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Postnatal development of GABA and calbindin cells and fibers in the prefrontal cortex and basolateral amygdala of gerbils (Meriones unguiculatus)

MPS-Authors
There are no MPG-Authors in the publication available
External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Brummelte, S., Witte, V., & Teuchert-Noodt, G. (2007). Postnatal development of GABA and calbindin cells and fibers in the prefrontal cortex and basolateral amygdala of gerbils (Meriones unguiculatus). International Journal of Developmental Neuroscience, 25(3), 191-200. doi:10.1016/j.ijdevneu.2007.01.002.


Cite as: https://hdl.handle.net/11858/00-001M-0000-0018-9572-5
Abstract
The postnatal maturation of immunohistochemically stained gamma-amino-butyric acid (GABA) and calbindin (CB) cells and fibers were quantitatively examined in the prefrontal cortex (PFC) and the basolateral amygdala (BLA) of the Mongolian gerbil (Meriones unguiculatus). Animals of different ages, ranging from juvenile (postnatal day (PD)14, PD20, PD30), to adolescent (PD70), adult (PD180, PD540) and aged (PD720) were analyzed. Results reveal an increase in GABAergic fiber densities between PD14-20 in the PFC and the BLA with a concomitant decrease in cell density. After PD70 GABA fiber density slightly decreases again in the BLA, while there is a further slow but significant increase in the PFC between PD70 and PD540. Fibers immunoreactive for the calcium binding-protein CB, which is predominantly localized in particular GABAergic subpopulations, also accumulate between PD14 and PD20 in the PFC and BLA, while a concomitant decrease in cell density is only seen in the BLA. Both areas reveal a decrease of CB cells between PD30 and PD70, which parallels with a decrease of CB fibers in the PFC. However, there is no particular ‘aging-effect’ in the fiber or cell densities of GABA or CB in any of the investigated areas in old animals. In conclusion, we here demonstrate long-term dynamics in cell and fiber densities of the GABAergic system until late in development which might correspond to the prolonged maturation of other neuroanatomical and functional systems.