English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Potential predictability of the North Atlantic heat transport based on an oceanic state estimate

MPS-Authors
There are no MPG-Authors in the publication available
External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Tiedje, B., Köhl, A., & Baehr, J. (2012). Potential predictability of the North Atlantic heat transport based on an oceanic state estimate. Journal of Climate, 25, 8475-8486. doi:10.1175/JCLI-D-11-00606.1.


Cite as: https://hdl.handle.net/11858/00-001M-0000-0018-939D-A
Abstract
This paper investigates the potential predictability of the meridional heat transport (MHT) in the North Atlantic on interannual time scales using hindcast ensembles based on an oceanic data assimilation product. The work analyzes the prognostic potential predictability (PPP), using the ocean synthesis of the German partner of the consortium for Estimating the Circulation and Climate of the Ocean (GECCO) as initial conditions and as boundary conditions. The PPP of the MHT varies with latitude: local maxima are apparent within the subpolar and the subtropical gyres, and a minimum is apparent at the boundary between the gyres. This PPP minimum can also be seen in the PPP structure of the Atlantic meridional overturning circulation (AMOC), although it is considerably less pronounced. The decomposition of the MHT shows that within the subpolar gyre, the gyre component of the MHT influences the PPP structure of the MHT. Within the subtropical gyre, the overturning component of the MHT characterizes the PPP structure of the MHT. At the boundary between the subpolar and the subtropical gyres, the dynamics of the Ekman heat transport limit the predictable lead times of the MHT. At most latitudes, variations in the velocity field control the PPP structure of the MHT. The PPP structure of the AMOC can also be classified into gyre and gyre-boundary regimes, but the predictable lead times within the gyres are only similar to those of the overturning component of the MHT. Overall, the analysis provides a reference point for the latitude dependence of the MHT's PPP structure and relates it to the latitude dependence of the AMOC's PPP structure.