English
 
User Manual Privacy Policy Disclaimer Contact us
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Na3[BN2] and Na2K[BN2]: A Known and a Novel Alkali Metal Dinitridoborate Obtained via Mild Thermal Dehydrogenation

MPS-Authors
/persons/resource/persons126707

Koz,  Cevriye
Chemical Metal Science, Max Planck Institute for Chemical Physics of Solids, Max Planck Society;

/persons/resource/persons126806

Prots,  Yurii
Yuri Prots, Chemical Metal Science, Max Planck Institute for Chemical Physics of Solids, Max Planck Society;

/persons/resource/persons126657

Höhn,  Peter
Peter Höhn, Chemical Metal Science, Max Planck Institute for Chemical Physics of Solids, Max Planck Society;

External Ressource
No external resources are shared
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Koz, C., Acar, S., Prots, Y., Höhn, P., & Somer, M. (2014). Na3[BN2] and Na2K[BN2]: A Known and a Novel Alkali Metal Dinitridoborate Obtained via Mild Thermal Dehydrogenation. Zeitschrift für anorganische und allgemeine Chemie, 640(2), 279-285. doi:10.1002/zaac.201300445.


Cite as: http://hdl.handle.net/11858/00-001M-0000-0018-A656-9
Abstract
Na3[BN2] and Na2K[BN2] were obtained as white polycrystalline powders from the reaction of the respective binary mixtures NaNH2:NaBH4 and NaNH2:KBH4 in molar ratio 2:1 at 873 K and 683 K, respectively, in an argon stream. According to the results of thermal analysis measurements, both compounds are thermally stable only up to 954 K (Na3[BN2]) and 712 K (Na2K[BN2]), respectively, decomposing under evolution of alkali metal and nitrogen to yield hexagonal BN as final residue, which was identified from powder patterns. The crystal structure of Na3[BN2] {β-Li3[BN2] type; P21/c (No. 14); Z = 4} was confirmed and the unit cell parameters redetermined: a = 5.724(1) Å, b = 7.944(1) Å, c = 7.893(1) Å, β = 111.31(1)°. According to X-ray powder data, Na2K[BN2] crystallizes isotypic to Na2KCuO2 in the tetragonal space group I4/mmm (No. 139) with a = 4.2359(1) Å, c = 10.3014(2) Å and Z = 2. The crystal structure of Na2K[BN2] is composed of linear [N–B–N]3– anions centering elongated M14 rhombic dodecahedra, which are formed by 8 sodium and 6 potassium atoms. The [BN2]@Na8/4K6/6 polyhedra are stacked along [001] and condensed via common tetragonal faces to generate a space-filling 3D arrangement. The B–N bond lengths for the strictly linear [N–B–N]3– units are 1.357(4) Å. Vibrational spectra of the title compounds were measured and analyzed based on D∞h symmetry of the relevant [N–B–N]3– groups taking into account the site symmetry effects for Na3[BN2]. Both the wavenumbers, as well as the calculated valence force constants f(B–N) = 7.29 N·cm–1 (Na3[BN2]) and 7.33 N·cm–1 (Na2K[BN2]), respectively, are in good agreement with those of the known alkali and alkaline earth dinitridoborates.