Help Privacy Policy Disclaimer
  Advanced SearchBrowse




Journal Article

Theoretical study of new acceptor and donor molecules based on polycyclic aromatic hydrocarbons

There are no MPG-Authors in the publication available
External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available

Naghavi, S. S., Gruhn, T., Alijani, V., Fecher, G. H., Felser, C., Medjanik, K., et al. (2011). Theoretical study of new acceptor and donor molecules based on polycyclic aromatic hydrocarbons. Journal of Molecular Spectroscopy, 265(2), 95-101. doi:10.1016/j.jms.2010.12.004.

Cite as: https://hdl.handle.net/11858/00-001M-0000-0018-B6F9-B
Functionalized polycyclic aromatic hydrocarbons (PAHs) are an interesting class of molecules in which the electronic state of the graphene-like hydrocarbon part is tuned by the functional group. Searching for new types of donor and acceptor molecules, a set of new PAHs has recently been investigated experimentally using ultraviolet photoelectron spectroscopy (UPS). In this work, the electronic structure of the PAHs is studied theoretically with the help of B3LYP hybrid density functionals. Using the Delta SCF method, electron binding energies have been determined which affirm, specify and complement the UPS data. Symmetry properties of molecular orbitals are analyzed for a categorization and an estimate of the related signal strength. While sigma-like orbitals are difficult to detect in UPS spectra of condensed film, calculation provides a detailed insight into the hidden parts of the electronic structure of donor and acceptor molecules. In addition, a diffuse basis set (6-311++G**) was used to calculate electron affinity and LUMO eigenvalues. The calculated electron affinity (EA) provides a classification of the donor/acceptor properties of the studied molecules. Coronene-hexaone shows a high EA, comparable to TCNQ which is a well-known classical acceptor. Calculated HOMO-LUMO gaps using the related eigenvalues have a good agreement with the experimental lowest excitation energies. TD-DFT also accurately predicts the measured optical gap. (c) 2010 Elsevier Inc. All rights reserved.