English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Biocatalysis in Organic Chemistry and Biotechnology: Past, Present, and Future

MPS-Authors
/persons/resource/persons58919

Reetz,  Manfred T.
Philipps-Universität Marburg, Fachbereich Chemie;
Research Department Reetz, Max-Planck-Institut für Kohlenforschung, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Reetz, M. T. (2013). Biocatalysis in Organic Chemistry and Biotechnology: Past, Present, and Future. Journal of the American Chemical Society, 135(34), 12480-12496. doi:10.1021/ja405051f.


Cite as: https://hdl.handle.net/11858/00-001M-0000-0018-D5FE-3
Abstract
Enzymes as catalysts in synthetic organic chemistry gained importance in the latter half of the 20th century, but nevertheless suffered from two major limitations. First, many enzymes were not accessible in large enough quantities for practical applications. The advent of recombinant DNA technology changed this dramatically in the late 1970s. Second, many enzymes showed a narrow substrate scope, often poor stereo- and/or regioselectivity and/or insufficient stability under operating conditions. With the development of directed evolution beginning in the 1990s and continuing to the present day, all of these problems can be addressed and generally solved. The present Perspective focuses on these and other developments which have popularized enzymes as part of the toolkit of synthetic organic chemists and biotechnologists. Included is a discussion of the scope and limitation of cascade reactions using enzyme mixtures in vitro and of metabolic engineering of pathways in cells as factories for the production of simple compounds such as biofuels and complex natural products. Future trends and problems are also highlighted, as is the discussion concerning biocatalysis versus nonbiological catalysis in synthetic organic chemistry. This Perspective does not constitute a comprehensive review, and therefore the author apologizes to those researchers whose work is not specifically treated here