Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONEN
  Dieser Datensatz wurde verworfen!DetailsÜbersicht

Verworfen

Zeitschriftenartikel

Structural Dynamics of the DnaK

MPG-Autoren
/persons/resource/persons117924

Popp,  Simone
Department of Biomolecular Mechanisms, Max Planck Institute for Medical Research, Max Planck Society;
Molecular chaperones, Max Planck Institute for Medical Research, Max Planck Society;

/persons/resource/persons94928

Reinstein,  Jochen
Department of Biomolecular Mechanisms, Max Planck Institute for Medical Research, Max Planck Society;
Molecular chaperones, Max Planck Institute for Medical Research, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Popp, S., Packschies, L., Radzwill, N., Vogel, K. P., Steinhoff, H., & Reinstein, J. (2005). Structural Dynamics of the DnaK. Journal of Molecular Biology, 347(5), 1039-1052. doi:10.1016/j.jmb.2005.02.026.


Zusammenfassung
The molecular chaperone DnaK recognizes and binds substrate proteins via a stretch of seven amino acid residues that is usually only exposed in unfolded proteins. The binding kinetics are regulated by the nucleotide state of DnaK, which alternates between DnaK·ATP (fast exchange) and DnaK·ADP (slow exchange). These two forms cycle with a rate mainly determined by the ATPase activity of DnaK and nucleotide exchange. The different substrate binding properties of DnaK are mainly attributed to changes of the position and mobility of a helical region in the C−terminal peptide−binding domain, the so−called LID. It closes the peptide−binding pocket and thus makes peptide binding less dynamic in the ADP−bound state, but does not (strongly) interact with peptides directly. Here, we address the question if nucleotide−dependent structural changes may be observed in the peptide−binding region that could also be connected to peptide binding kinetics and more importantly could induce structural changes in peptide stretches using the energy available from ATP hydrolysis. Model peptides containing two cysteine residues at varying positions were derived from the structurally well−documented peptide NRLLLTG and labelled with electron spin sensitive probes. Measurements of distances and mobilities of these spin labels by electron paramagnetic resonance spectroscopy (EPR) of free peptides or peptides bound to the ATP and ADP−state of DnaK, respectively, showed no significant changes of mobility nor distance of the two labels. This indicates that no structural changes that could be sensed by the probes at the position of central leucine residues located in the center of the binding region occur due to different nucleotide states. We conclude from these studies that the ATPase activity of DnaK is not connected to structural changes of the peptide−binding pocket but rather only has an effect on the LID domain or other further remote residues