日本語
 
Help Privacy Policy ポリシー/免責事項
  詳細検索ブラウズ

アイテム詳細

登録内容を編集
  このアイテムは取り下げられました。詳細要約

取り下げ

学術論文

In vivo dendritic calcium dynamics in deep layer cortical pyramidal neurons

MPS-Authors
/persons/resource/persons93373

Helmchen,  Fritjof
Department of Cell Physiology, Max Planck Institute for Medical Research, Max Planck Society;
In Vivo Microscopy of Cortical Dynamics, Max Planck Institute for Medical Research, Max Planck Society;
Cortical Two Photon Imaging, Max Planck Institute for Medical Research, Max Planck Society;

/persons/resource/persons128986

Denk,  Winfried
Department of Biomedical Optics, Max Planck Institute for Medical Research, Max Planck Society;

External Resource
There are no locators available
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
フルテキスト (公開)
公開されているフルテキストはありません
付随資料 (公開)
There is no public supplementary material available
引用

Helmchen, F., Svoboda, K., Denk, W., & Tank, D. W. (1999). In vivo dendritic calcium dynamics in deep layer cortical pyramidal neurons. Nature Neuroscience, 2, 989-996. doi:10.1038/14788.


要旨
Dendritic Ca2+ action potentials in neocortical pyramidal neurons have been characterized in brain slices, but their presence and role in the intact neocortex remain unclear. Here we used two−photon microscopy to demonstrate Ca2+ electrogenesis in apical dendrites of deep−layer pyramidal neurons of rat barrel cortex in vivo. During whisker stimulation, complex spikes recorded intracellularly from distal dendrites and sharp waves in the electrocorticogram were accompanied by large dendritic [Ca2+ ] transients; these also occurred during bursts of action potentials recorded from somata of identified layer 5 neurons. The amplitude of the [Ca 2+] transients was largest proximal to the main bifurcation, where sodium action potentials produced little Ca2+ influx. In some cases, synaptic stimulation evoked [Ca2+] transients without a concomitant action potential burst, suggesting variable coupling between dendrite and soma