English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Structure and function of proteins of the phosphotransferase system and of 6-phospho-β-glycosidases in Gram-positive bacteria

MPS-Authors
/persons/resource/persons93660

Kalbitzer,  Hans Robert
Emeritus Group Biophysics, Max Planck Institute for Medical Research, Max Planck Society;

Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Hengstenberg, W., Kohlbrecher, D., Witt, E., Kruse, R., Christiansen, I., Peters, D., et al. (1993). Structure and function of proteins of the phosphotransferase system and of 6-phospho-β-glycosidases in Gram-positive bacteria. FEMS Microbiology Reviews, 12(1-3), 149-164. doi:10.1111/j.1574-6976.1993.tb00016.x.


Cite as: http://hdl.handle.net/11858/00-001M-0000-0019-AA13-3
Abstract
New information about the proteins of the phosphotransferase system (PTS) and of phosphoglycosidases of homofermentative lactic acid bacteria and related species is presented. Tertiary structures were elucidated from soluble PTS components. They help to understand regulatory processes and PTS function in lactic acid bacteria. A tertiary structure of a membrane-bound enzyme II is still not available, but expression of Gram-positive genes encoding enzymes II can be achieved in Escherichia coli and enables the development of effective isolation procedures which are necessary for crystallization experiments. Considerable progress was made in analysing the functions of structural genes which are in close vicinity of the genes encoding the sugar-specific PTS components, such as the genes encoding the tagatose-6-P pathway and the 6-phospho-beta-glycosidases. These phosphoglycosidases belong to a subfamily of the beta-glycosidase family I among about 300 different glycosidases. The active site nucleophile was recently identified to be Glu 358 in Agrobacterium beta-glucosidase. This corresponds to Glu 375 in staphylococcal and lactococcal 6-phospho-beta-galactosidase. This enzyme is inactivated by mutating Glu 375 to Gln. Diffracting crystals of the lactococcal 6-P-beta-galactosidase allow the elucidation of its tertiary structure which helps to derive the structures for the entire glycosidase family 1. In addition, a fusion protein with 6-phospho-beta-galactosidase and staphylococcal protein A was constructed.