English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Structural mapping of catalytic site with respect to alpha-subunit and noncatalytic site in yeast mitochondrial F1-ATPase using fluorescence resonance energy transfer.

MPS-Authors
/persons/resource/persons196902

Divita,  Gilles
Emeritus Group Biophysics, Max Planck Institute for Medical Research, Max Planck Society;

/persons/resource/persons93142

Goody,  Roger S.
Emeritus Group Biophysics, Max Planck Institute for Medical Research, Max Planck Society;

External Resource
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Divita, G., Goody, R. S., Gautheron, D. C., & Di Pietro, A. (1993). Structural mapping of catalytic site with respect to alpha-subunit and noncatalytic site in yeast mitochondrial F1-ATPase using fluorescence resonance energy transfer. The Journal of Biological Chemistry, 268(18), 13178-13186.


Cite as: https://hdl.handle.net/11858/00-001M-0000-0019-AA56-D
Abstract
The intrinsic tryptophan fluorescence of Schizosaccharomyces pombe mitochondrial F1 is a very sensitive probe to differentiate nucleotide binding to catalytic and noncatalytic sites (Divita, G., Di Pietro, A., Roux, B., and Gautheron, D. C. (1992) Biochemistry 31, 5791-5798), the catalytic site saturation producing quenching of Trp-257 fluorescence (Divita, G., Jault, J.-M., Gautheron, D. C., and Di Pietro, A. (1993) Biochemistry 32, 1017-1024). The present results indicate that two types of fluorescent nucleotide analogues, bearing either 2'(3')N-methylanthraniloyl (mant) or 2',3'-O-(2,4,6-trinitrophenyl) (TNP) group, exhibit high-affinity binding and behave similarly to the corresponding unmodified nucleotides. Selective binding of mant GDP to the catalytic site produces a marked quenching of intrinsic fluorescence which is due to resonance energy transfer between Trp-257 and the mant group. The high efficiency of the transfer allows the determination of a short distance, 10.5 A, indicating the close proximity of catalytic site and alpha-subunit Trp-257. Selective saturation of the noncatalytic site by TNP-ADP produces a marked quenching of the extrinsic fluorescence of mant GDP bound to the catalytic site, which is correlated to an important resonance energy transfer between the two fluorescent groups. A rather short distance of 17.5 A is calculated, indicating vicinity of catalytic and noncatalytic sites.