English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Kinetic and structural analysis of the Mg(2+)-binding site of the guanine nucleotide-binding protein p21H-ras

MPS-Authors
/persons/resource/persons197471

John,  Jacob
Emeritus Group Biophysics, Max Planck Institute for Medical Research, Max Planck Society;

/persons/resource/persons197535

Rensland,  Hans
Emeritus Group Biophysics, Max Planck Institute for Medical Research, Max Planck Society;

/persons/resource/persons95189

Schlichting,  Ilme
Emeritus Group Biophysics, Max Planck Institute for Medical Research, Max Planck Society;

/persons/resource/persons93142

Goody,  Roger S.
Emeritus Group Biophysics, Max Planck Institute for Medical Research, Max Planck Society;

/persons/resource/persons95966

Wittinghofer,  Alfred
Emeritus Group Biophysics, Max Planck Institute for Medical Research, Max Planck Society;

External Resource
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

John, J., Rensland, H., Schlichting, I., Vetter, I. R., Borasio, G. D., Goody, R. S., et al. (1993). Kinetic and structural analysis of the Mg(2+)-binding site of the guanine nucleotide-binding protein p21H-ras. The Journal of Biological Chemistry, 268(2), 923-929. Retrieved from http://www.jbc.org/cgi/content/abstract/268/2/923.


Cite as: https://hdl.handle.net/11858/00-001M-0000-0019-AA99-A
Abstract
The coordination and binding of the Mg2+ ion in the nucleotide-binding site of p21 have been investigated using site-directed mutagenesis, kinetic methods, and phosphorous NMR. Mg2+ in the p21.nucleotide.Mg2+ complex appears to be in fast equilibrium with the solvent. The dissociation constant between Mg2+ and the p21.GDP complex was determined to be 2.8 microM. It decreases 30- or 16-fold on substituting Ser-17 or Asp-57 with alanine, respectively, whereas the T35A mutation has no effect. All three mutations influence the dissociation constants and the association and dissociation rate constants of the interaction between guanine nucleotides and p21, but to a different degree. We conclude that Thr-35 is only complexed to Mg2+ in the GTP conformation and both Asp-57 and Ser-17 appear to be critical for both GDP and GTP binding. 31P NMR spectra of the GDP and Gpp(NH)p (guanosine-5'-(beta,gamma-imido)triphosphate) complexes of mutated p21 show a remarkable perturbation of the guanine nucleotide-binding site compared to wild-type protein. The mutant proteins show reduced GTPase rates, which are not stimulated by the GTPase-activating protein GAP. p21(S17A) has been reported to function just as p21(S17N) as a dominant negative inhibitor of normal p21. We find that it inhibits oncogenic p21-induced survival of primary neurons.