English
 
User Manual Privacy Policy Disclaimer Contact us
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Flip and flop: a cell-specific functional switch in glutamate-operated channels of the CNS

MPS-Authors
/persons/resource/persons92382

Burnashev,  Nail
Department of Cell Physiology, Max Planck Institute for Medical Research, Max Planck Society;

/persons/resource/persons93388

Herb,  Anne
Department of Molecular Neurobiology, Max Planck Institute for Medical Research, Max Planck Society;

/persons/resource/persons93954

Köhler,  Martin
Department of Molecular Neurobiology, Max Planck Institute for Medical Research, Max Planck Society;

/persons/resource/persons95089

Sakmann,  Bert
Department of Cell Physiology, Max Planck Institute for Medical Research, Max Planck Society;

/persons/resource/persons95292

Seeburg,  Peter H.
Department of Molecular Neurobiology, Max Planck Institute for Medical Research, Max Planck Society;

Fulltext (public)
There are no public fulltexts available
Supplementary Material (public)
There is no public supplementary material available
Citation

Sommer, B., Keinänen, K., Verdoorn, T. A., Wisden, W., Burnashev, N., Herb, A., et al. (1990). Flip and flop: a cell-specific functional switch in glutamate-operated channels of the CNS. Science, 249(4976), 1580-1585. doi:10.1126/science.1699275.


Cite as: http://hdl.handle.net/11858/00-001M-0000-0019-AD31-9
Abstract
In the central nervous system (CNS), the principal mediators of fast synaptic excitatory neurotransmission are L-glutamate-gated ion channels that are responsive to the glutamate agonist alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA). In each member of a family of four abundant AMPA receptors, a small segment preceding the predicted fourth transmembrane region has been shown to exist in two versions with different amino acid sequences. These modules, designated "flip" and "flop," are encoded by adjacent exons of the receptor genes and impart different pharmacological and kinetic properties on currents evoked by L-glutamate or AMPA, but not those evoked by kainate. For each receptor, the alternatively spliced messenger RNAs show distinct expression patterns in rat brain, particularly in the CA1 and CA3 fields of the hippocampus. These results identify a switch in the molecular and functional properties of glutamate receptors operated by alternative splicing.