English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Functional properties of recombinant rat GABAA receptors depend upon subunit composition

MPS-Authors
/persons/resource/persons92704

Draguhn,  Andreas
Department of Cell Physiology, Max Planck Institute for Medical Research, Max Planck Society;

/persons/resource/persons95292

Seeburg,  Peter H.
Department of Molecular Neurobiology, Max Planck Institute for Medical Research, Max Planck Society;

/persons/resource/persons95089

Sakmann,  Bert
Department of Cell Physiology, Max Planck Institute for Medical Research, Max Planck Society;

Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Verdoorn, T. A., Draguhn, A., Ymer, S., Seeburg, P. H., & Sakmann, B. (1990). Functional properties of recombinant rat GABAA receptors depend upon subunit composition. Neuron, 4(6), 919-928. doi:10.1016/0896-6273(90)90145-6.


Cite as: https://hdl.handle.net/11858/00-001M-0000-0019-AD37-E
Abstract
GABA-gated chloride channels were expressed in human embryonic kidney cells following transfection of cDNAs encoding the alpha 1, beta 2, and gamma 2 subunits of the rat GABAA receptor (GABAR). Functional properties were determined using patch-clamp techniques in the whole-cell and outside-out configurations. Large whole-cell currents were observed in cells expressing the alpha 1 beta 2, alpha 1 gamma 2, and alpha 1 beta 2 gamma 2 subunit combinations. The unique characteristics of GABAR channels consisting of these subunit combinations depended upon the presence or absence of beta 2 and gamma 3 subunits. GABA-activated currents in cells expressing GABARs with the beta 2 subunit desensitized faster and showed greater outward rectification, and the channels had a shorter mean open time than GABARs composed of alpha 1 gamma 2 subunits. When the gamma 2 subunit was present the resulting GABAR channels had a larger conductance. The slope of the concentration-response curve was significantly steeper for GABARs composed of alpha 1 beta 2 gamma 2 subunits compared with GABARs consisting of alpha 1 beta 2 or alpha 1 gamma 2 subunit combinations.