English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Three-dimensional structures of H-ras p21 mutants: molecular basis for their inability to function as signal switch molecules

MPS-Authors
/persons/resource/persons93895

Krengel,  Ute
Emeritus Group Biophysics, Max Planck Institute for Medical Research, Max Planck Society;

/persons/resource/persons95189

Schlichting,  Ilme
Photoreceptors, Max Planck Institute for Medical Research, Max Planck Society;
Emeritus Group Biophysics, Max Planck Institute for Medical Research, Max Planck Society;

/persons/resource/persons95158

Scherer,  Anna
Department of Biomolecular Mechanisms, Max Planck Institute for Medical Research, Max Planck Society;

/persons/resource/persons123668

Schumann,  Renate
Emeritus Group Biophysics, Max Planck Institute for Medical Research, Max Planck Society;
Dietmar Manstein Group, Max Planck Institute for Medical Research, Max Planck Society;

/persons/resource/persons93650

Kabsch,  Wolfgang
Emeritus Group Biophysics, Max Planck Institute for Medical Research, Max Planck Society;
Department of Biomolecular Mechanisms, Max Planck Institute for Medical Research, Max Planck Society;

/persons/resource/persons95966

Wittinghofer,  Alfred
Emeritus Group Biophysics, Max Planck Institute for Medical Research, Max Planck Society;

Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Krengel, U., Schlichting, I., Scherer, A., Schumann, R., Frech, M., John, J., et al. (1990). Three-dimensional structures of H-ras p21 mutants: molecular basis for their inability to function as signal switch molecules. Cell, 62(3), 539-548. doi:10.1016/0092-8674(90)90018-A.


Cite as: https://hdl.handle.net/11858/00-001M-0000-0019-AD76-F
Abstract
The X-ray structures of the guanine nucleotide binding domains (amino acids 1-166) of five mutants of the H-ras oncogene product p21 were determined. The mutations described are Gly-12----Arg, Gly-12----Val, Gln-61----His, Gln-61----Leu, which are all oncogenic, and the effector region mutant Asp-38----Glu. The resolutions of the crystal structures range from 2.0 to 2.6 A. Cellular and mutant p21 proteins are almost identical, and the only significant differences are seen in loop L4 and in the vicinity of the gamma-phosphate. For the Gly-12 mutants the larger side chains interfere with GTP binding and/or hydrolysis. Gln-61 in cellular p21 adopts a conformation where it is able to catalyze GTP hydrolysis. This conformation has not been found for the mutants of Gln-61. Furthermore, Leu-61 cannot activate the nucleophilic water because of the chemical nature of its side chain. The D38E mutation preserves its ability to bind GAP.