English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Protein-RNA interactions during TMV assembly

MPS-Authors
/persons/resource/persons93463

Holmes,  Kenneth C.
Protein Cristallography XDS, Max Planck Institute for Medical Research, Max Planck Society;
Emeritus Group Biophysics, Max Planck Institute for Medical Research, Max Planck Society;
Muscle Research, Max Planck Institute for Medical Research, Max Planck Society;

Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Holmes, K. C. (1979). Protein-RNA interactions during TMV assembly. Journal of supramolecular structure 0091-7419, 12(3), 305-320. doi:10.1002/jss.400120304.


Cite as: https://hdl.handle.net/11858/00-001M-0000-0019-B0BB-1
Abstract
A review of the structural studies of tobacco mosaic virus (TMV) is given. TMV is essentially a flat helical microcrystal with 16 1/3 subunits per turn. A single strand of RNA runs along the helix and is deeply embedded in the protein. The virus particles form oriented gels from which high-resolution X-ray fiber diffraction data can be obtained. This may be interpreted by the use of six heavy-chain derivatives to give an electron density map at 0.4 nm resolution from which the RNA configuration and the form of the inner part of the protein subunit may be determined. In addition, the protein subunits form a stable 17-fold two-layered disk which is involved in virus assembly and which crystallizes. By the use of noncrystallographic symmetry and a single heavy-atom derivative, it has been possible to solve the structure of the double disk to 0.28 nm resolution. In this structure one sees that an important structural role is played by four alpha-helices, one of which (the LR helix) appears to form the main binding site for the RNA. The main components of the binding site appear to be hydrophobic interactions with the bases, hydrogen bonds between aspartate groups and the sugars, and arginine salt bridges to the phosphate groups. The binding site is between two turns of the virus helix or between the turns of the double disk. In the disk, the region proximal to the RNA binding site is in a random coil until the RNA binds, whereupon the 24 residues involved build a well-defined structure, thereby encapsulating the RNA.