English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Random phase approximation up to the melting point: Impact of anharmonicity and nonlocal many-body effects on the thermodynamics of Au

MPS-Authors
/persons/resource/persons125158

Grabowski,  Blazej
Adaptive Structural Materials (Simulation), Computational Materials Design, Max-Planck-Institut für Eisenforschung GmbH, Max Planck Society;

/persons/resource/persons125477

Wippermann,  Stefan Martin
Atomistic Modelling, Interface Chemistry and Surface Engineering, Max-Planck-Institut für Eisenforschung GmbH, Max Planck Society;

/persons/resource/persons125152

Glensk,  Albert
Computational Phase Studies, Computational Materials Design, Max-Planck-Institut für Eisenforschung GmbH, Max Planck Society;

/persons/resource/persons125180

Hickel,  Tilmann
Computational Phase Studies, Computational Materials Design, Max-Planck-Institut für Eisenforschung GmbH, Max Planck Society;

/persons/resource/persons125293

Neugebauer,  Jörg
Computational Materials Design, Max-Planck-Institut für Eisenforschung GmbH, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Supplementary Material (public)
There is no public supplementary material available
Citation

Grabowski, B., Wippermann, S. M., Glensk, A., Hickel, T., & Neugebauer, J. (2015). Random phase approximation up to the melting point: Impact of anharmonicity and nonlocal many-body effects on the thermodynamics of Au. Physical Review B, 91(20): 201103. doi:10.1103/PhysRevB.91.201103.


Cite as: https://hdl.handle.net/11858/00-001M-0000-0019-2F9D-0
Abstract
Application of the generalized gradient corrected functional within standard density-functional theory results in a dramatic failure for Au, leading to divergent thermodynamic properties well below the melting point. By combining the upsampled thermodynamic integration using Langevin dynamics technique with the random phase approximation, we show that inclusion of nonlocal many-body effects leads to a stabilization and to an excellent agreement with experiment. © Published by the American Physical Society.