Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Ethanol Electro-Oxidation on Ternary Platinum–Rhodium–Tin Nanocatalysts: Insights in the Atomic 3D Structure of the Active Catalytic Phase

MPG-Autoren
/persons/resource/persons22163

Teschner,  Detre
Inorganic Chemistry, Fritz Haber Institute, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Erini, N., Loukrakpam, R., Petkov, V., Baranova, E. A., Yang, R., Teschner, D., et al. (2014). Ethanol Electro-Oxidation on Ternary Platinum–Rhodium–Tin Nanocatalysts: Insights in the Atomic 3D Structure of the Active Catalytic Phase. ACS Catalysis, 4(6), 1859-1867. doi:10.1021/cs500147p.


Zitierlink: https://hdl.handle.net/11858/00-001M-0000-0019-0AC9-0
Zusammenfassung
Novel insights in the synthesis–structure–catalytic activity relationships of nanostructured trimetallic Pt–Rh–Sn electrocatalysts for the electrocatalytic oxidation of ethanol are reported. In particular, we identify a novel single-phase Rh-doped Pt–Sn Niggliite mineral phase as the source of catalytically active sites for ethanol oxidation; we discuss its morphology, composition, chemical surface state, and the detailed 3D atomic arrangement using high-energy (HE-XRD), atomic pair distribution function (PDF) analysis, and X-ray photoelectron spectroscopy (XPS). The intrinsic ethanol oxidation activity of the active Niggliite phase exceeded those of earlier reports, lending support to the notion that the atomic-scale neighborhood of Pt, Rh, and Sn is conducive to the emergence of active surface catalytic sites under reaction conditions. In situ mechanistic Fourier transform infrared (in situ FTIR) analysis confirms an active 12 electron oxidation reaction channel to CO2 at electrode potentials as low as 450 mV/RHE, demonstrating the favorable efficiency of the PtRhSn Niggliite phase for C–C bond splitting.